

Kiyoshi Tsutsuki http://timetraveler.html.xdomain.jp

pH and crop growth (vegetables and root crops)				
Low pH tolerance	Crops			
strong (4.0~5.0)	Potato, taro			
A little strong (4.5~6.0)	Sweet potato, white radish, turnip, green bean, carrot, cucumber, parsley			
A little weak (5.5~6.5)	Tomato, egg plant, cabbage, cauliflower, broccoli, celery, green peas, melon			
weak (6.0~7.0)	Spinach, Onion, leek, burdock, asparagus, red pepper, lettus			

pH and crop growth (grains and pasture crops)					
Low pH tolerance	Crops				
strong (4.0~5.0)	Rice, tea, tobacco				
A little strong (4.5~6.0)	Wheat, timothy				
A little weak (5.5~6.5)	Adzuki bean, clover, milk vetch				
weak (6.0~7.0)	Sugar beet, barley, rye				

Acidic						Alkaline								
p I .0	4.5	igh 5.0	5.	Mid 5	Weak 6.0	Slight 6.5	Sligh 7.0	1 t W 7.5	eak8.	0	8.5	9.0 1	High 9.5	рН 10.0
					-1	Nitr	ogen (N)	100						
					1	Dha	- JI	. 5		1	1-	1000		
					1	Pilos	phorus (i	, 5		I	F			
					1	Pottasit	IM (K)	-C			7			
-					1	Sulfu	r (S)	2		I ton				
- 14				100000	1		Calc	ium (Ca)	8.1				
-			2222	1000			- 1 1	Magr	nesium	(Mg)				
Ir	on, alumi	num (Fe	;, Al)					1	100000	T	-			
	and in		M	anganes	e (Mn)		- 11		1000	1	100			
-	1000			Boror	(B)				11111	T				
	1000		Copper	r, zinc	(Cu, Zn)				1.10				101100	
				1,					Molybe	lanum	(Ma)	3333	19	

Soil acidity and the growth of crops (1)

- A) Damage by hydrogen ion.
- B) Damage by active aluminum.

C) Deficiency in calcium and magnesium

D) Deficiency in phosphate.

Binding of phosphate and aluminum.

Soil acidity and the growth of crops (2)

E) Leaching and deficiency of boron.

Decrease in solubility of molybdenum and its deficiency.

 $\rightarrow \mbox{Legumes}$ frequently suffer from molybdenum deficiency.

F) Excess in manganese.

As manganese become more soluble in acidic condition.

Soil acidity and the growth of crops (3)

G) Repression of organic matter decomposition.

By ameliorating the soil acidity, mineralization of organic nitrogen and organic phosphorus increase. .

H) Change in microbial flora.

Fungi prefer acidic condition, while bacteria and actinomycete prefer alkaline condition.

Soil acidity and the growth of crops (4)

I) Repression of nitrogen fixation. Optimum pH $6.5 \sim 7.5$

J) Repression of nitrification.

By liming, the activity of nitrification increases remarkably.

Improvement of soil acidity (1)

• Calcium carbonate (CaCO₃)

Apply 3 times of exchangeable acidity (y₁). Buffer curve method.

• Gypsum (CaSO₄)

In the sublayer, Al³⁺ is replaced by Ca²⁺. High solubility of gypsum helps the reaction.

Improvement of soil acidity (2)

- Apply phosphates in large amounts, because phosphate is hardly soluble in acidic soil.
- Apply organic matter, to increase the buffer capacity to pH change of the soil.

If the soil is made too alkaline,

Nutrient deficiency occurs. For example, Phosphate, calcium, magnesium, boron, iron, manganese, and zinc.

Features of 3 types of soils					
soil	classification	feature			
Uenae	Immature volcanic fallout soil	Coarse particles			
Nopporo	Gray terrace soil	Clay rich			
Shibetsu	Humic andosoil	Humus rich			

Physiologically acidic fertilizers

- Ammonium sulfate (NH₄)₂SO₄
- Ammonium cloride NH₄Cl
- Potassium sulfate K_2SO_4
- Potassium cloride KCl

NH₄⁺ and K⁺ are absorbed, but SO₄²⁻ and Cl⁻ remain in soil, unabsorbed.

Physiologically neutral fertilizers

- Urea (NH₂)₂CO
- Ammonium nitrate NH₄NO₃
- Ammonium phosphate (NH₄)₂HPO₄
- Same for compost.

All the constituents are absorbed or decomposed.

- $SO_2 + H_2O \rightarrow H_2SO_3$
- $H_2SO_3 + (1/2)O_2 \rightarrow 2H^+ + SO_4^{2-}$
- N₂O, NO, NO₂ + m H₂O + (n/2) O₂ \rightarrow H ⁺ + NO₃⁻

Exchangeable bases (Ca^{2+} , Mg^{2+} , K^+ , Na^+)

- Extracted with1M ammonium acetate from soil.
- Determined by the atomic absorption photometer or flame photometer.
- Essential cations existing in available forms in soil.

Exchangeable bases (Ca^{2+} , Mg^{2+} , K^+ , Na^+)

- By soil acidification, Ca²⁺ and Mg²⁺ decrease.
- K⁺ reflects the applied amount of potassium fertilizers.
- Na⁺ is high in alkaline soil or in salinized soils. However, not so high in Japan.

Cation Exchange Capacity (CEC)

- Ability of soils to hold cations electrostatically.
- It is due to the negative charges of clay minerals and humus in soil.
- Soil is first saturated with pH7 1M ammonium sulfate, then ammonium ion is eluted out with 1 M KCl. Eluted ammonium is determined by distillation and titration, or by colorimetry (indophenol method).

Soils with high CEC.

- Soils rich in humus.
- Soils rich in clay.

To increase CEC,

- Apply organic matter (compost) continuously.
- Dress soils rich in clay.

Standard values for CEC

- Used as fundamental data for planning the methods of soil improvement and fertilizer management.
- Immature sand dune soil: $3-10 \text{ cmol}_c/\text{kg}$
- Gray lowland soil, light colored ando soils: 15-25 cmol_c/kg
- Humic ando soils: $20-30 \text{ cmol}_c/\text{kg}$