Soil Organic Matter Its Characteristics and Roles in Agricultural Environments

Kiyoshi Tsutsuki http://timetraveler.html.xdomain.jp

Wise-being in the forest told

Homo ab Humo

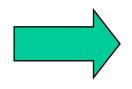
- Human was born from a rich soil containing large amount of
- Human Humus Humidity

There is a profound connection between human, humus, and humidity.

• Sleeping mind of human "Terra as the mother"

Genesis 3.19 – Old Testament

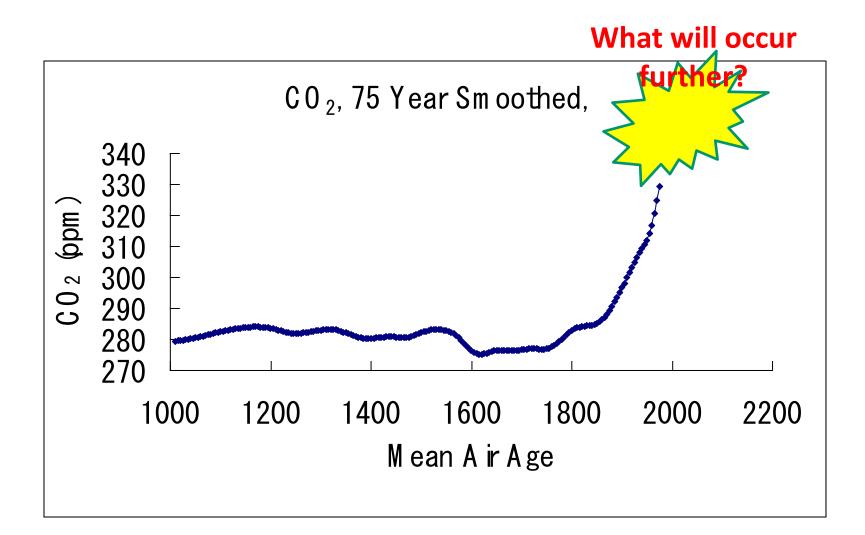
• You were made from soil, and you will become soil again.


Do you feel soil dirty?

Take a clod of soil into your hand, watch and smell it.

We will be relieved by such soils:

- Black soil
- Soft soil
- Good smelling soil
- Soil in which small worms are living

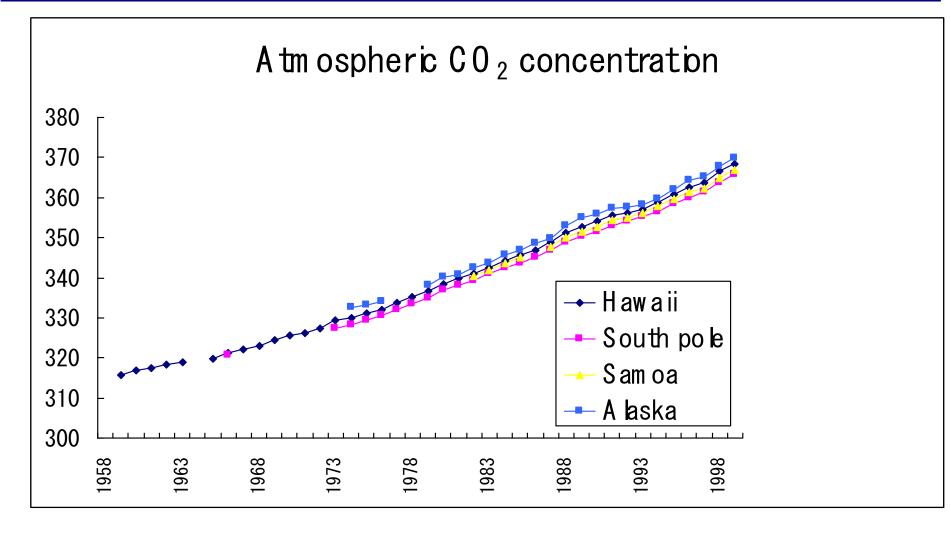


Such soils contain a suitable amount of organic matter.

Soil breeds life.

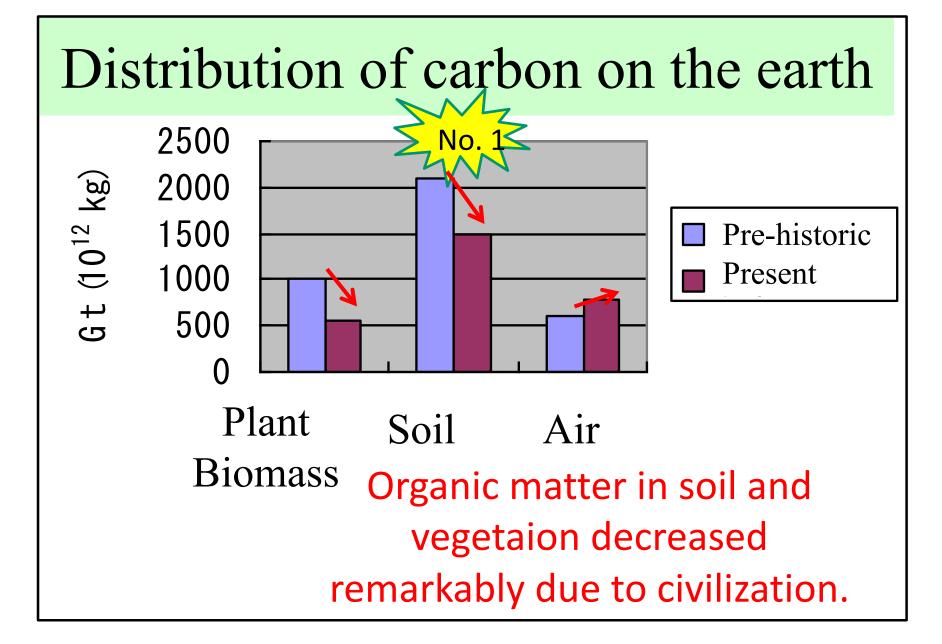
Evidence for this fact is

Soil Organic Matter.


Change in ambient CO₂

(Ice-core data of antarctics)

70% of the biologists consider that the mass extinction is occurring presently.


Increase in atmospheric CO₂ concentration

Stocks of carbon on the surface of earth

Stock pools		Stored amount
		10 ¹² kg
Earth		
Plant biomas	SS	550
Soil humus		1500
Atmosphere	1850 (CO ₂ 260 ppm)	560
	1890 (CO ₂ 290 ppm)	630
	2000 (CO ₂ 390 ppm)	820
Ocean		38000
Carbonate s	alts	20x10 ⁶
Dissolved organic matter		600
Solid suspension and sediments		3000
Earth crust (fo	ossil fuel)	4000
<mark>Total amount</mark>		44800

Hunt(1972), Paul and Clark(1989), Eswaran et al.(1993) CO_2 concentration was calculated from ice-core data in Law Dome Antarctics.

Humic substance is

- The most abundant organic matter on the earth surface. As carbon amount
 1500 Gt (10⁹ t, 10¹² kg)
- 3 times more abundant than plant biomass
- 2 times more abundant than CO₂
 2100 Gt of humus carbon in pre-historic age.

Nitrogen on the earth: Location and stock size.

Location of occurrence	10 ⁶ t	
Atmosphere	3.9×10^9	
Terrestrial Plants	15×10^{3}	
Animals	0.2×10^{3}	
Soil organic matter	150×10^{3}	
Ocean Plants & animals	0.5×10^{3}	
Sea water and sediments	1200×10^{3}	
Nitrate – N in the above	570×10^{3}	

植物栄養学第2版(文永堂)

Phosphorus on the earth: Location and stock size.

Location of occurrence	10 ⁶ t	
Terrestrial biota	2.6×10^{3}	
Phosphor mineral	19×10^{3}	
Soil	$96 \sim 160 \times 10^3$	
Fresh water	0.090×10^{3}	
Marine Biota	$0.05 \sim 0.12 \times 10^3$	
Soluble inorganic P	80×10^{3}	
Sediments	$840,000 \times 10^3$	

Soil is the largest pool of stocks both for N and P.

植物栄養学第2版(文永堂)

Biomass production and respiration/ combustion on the earth (10^9 t/year)

	Biomass production CO ₂ formation	
Plant	500	34.5
Animal	0.5	4.1
Human	0.1	0.7
Microbes	1.0	112
Wild fire		6.9
Volcano		0.15
Factory		15
Total	502	173.5

Emission of CO_2 due to human activity

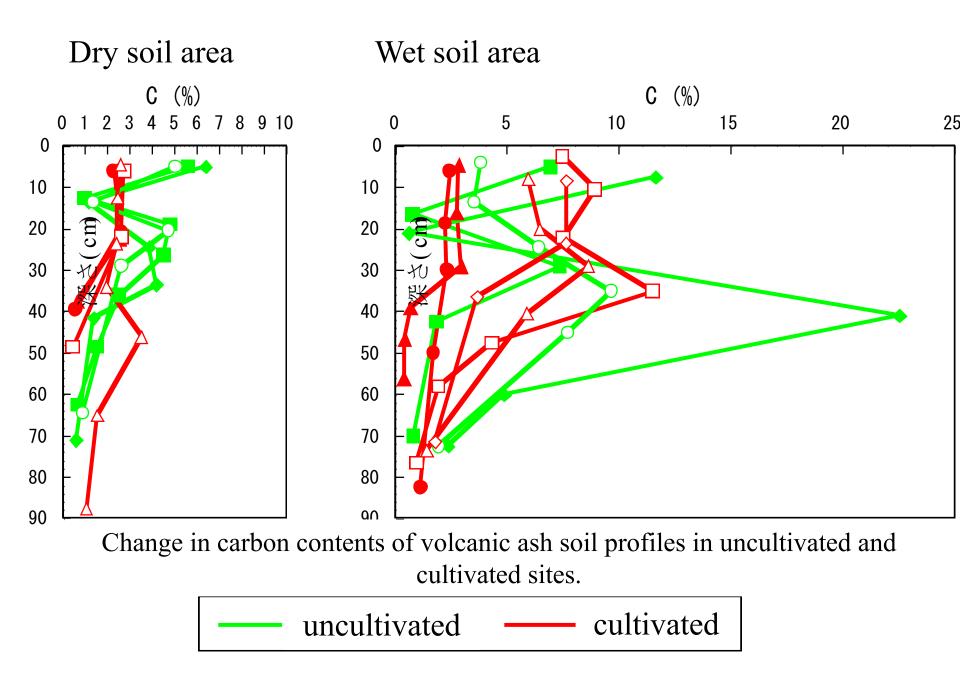
Factors	Increase rare of CO ₂ carbon	
	Gt $(10^9 t)$ /year	
Fossil fuel combustion	7	
Land use change	2.2	

Land-use changeForest clearingSlush and burnGrassland to upland field

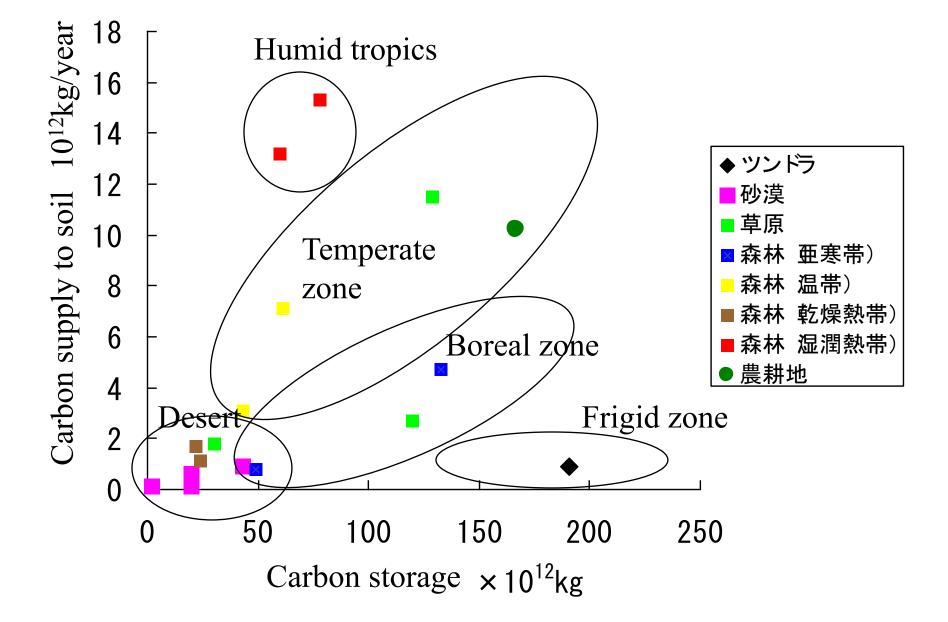
Large amount of gas is emitted from soil surface

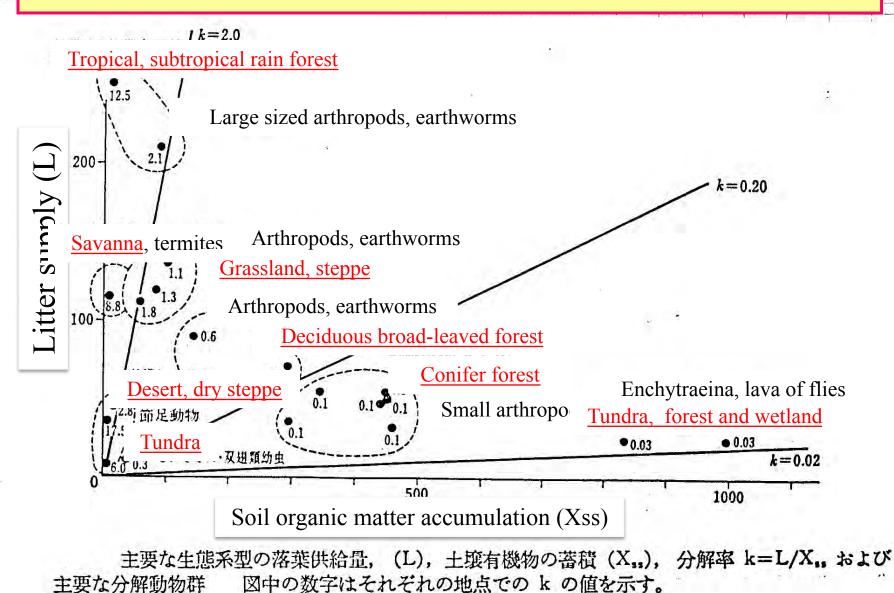
World energy consumption (2003)

Source	Consumption (petroleum equivalent 10 ⁸ tons)			
Petroleum	36.4			
Natural gas	23. 3	85.5	\succ CO ₂ emission	
Coal	25. 8			
Atomic	6.0 –	10.0	→ heat emission	
Hydraulic	6.0	12.0		


Energy consumption per capita

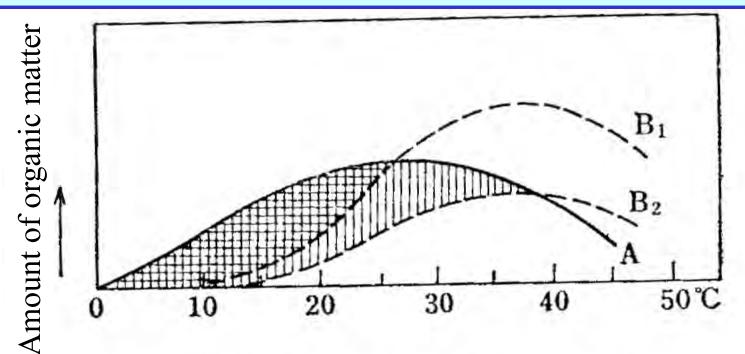
- World 1.7 ton annually (petroleum equivalent)
- Japan 4.1 ton annually
- USA 8.0 ton annually
- Human activity causes the increase in atmospheric CO₂ concentration.
- Plant and soil absorb CO₂.




Wind-break forest soil Adjacent upland field soil
Volcanic ash soil profile in the adjacent forest and upland field.

Supply and storage of carbon in soil

Litter supply and SOM accumulation


Primary forest in Baybay, Leyte

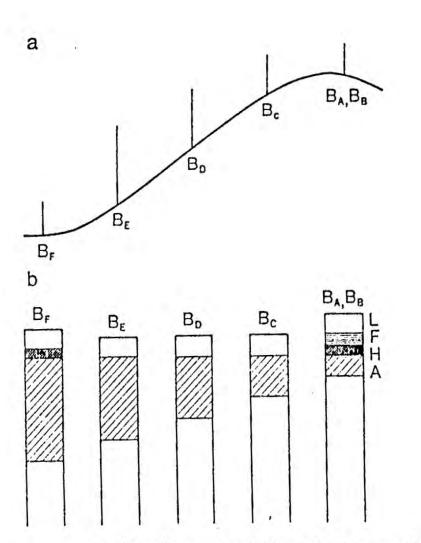
Primary forest soil profile in Baybay, Leyte

Factors affecting SOM accumulation: temperature and moisture content of soil

Aerobic upland soil

- Anaerobic flooded soil
- A Organic matter production by plant
- B₁ Organic matter decomposition in aerobic soil
- B₂ Organic matter decomposition in anaerobic soil

Amounts and Turnover Rates of C and N in the Microbial Biomass for Cultivated Soils for Three Locations


Soil and Location	<u>Microbial C</u> kg/ha	<u>Microbial N</u> kg∕ha	C Inputs	Nitrogen Flux through Microbial Biomass kg/ha/yr	Microbial Turnover Time yr
Temperate	Ng/ 114	ng/ 11a	Wg/Ha/j		y i
England	570	95	1.2	34	2.5
Canada	1600	300	1.6	53	6.8
Tropical					
Brazil	460	84	13	350	0.24

in the second se

1.1

inter i

÷

ų.

1

Schematic representation of soil types $(B_A - B_F)$ of Brown forest soil. a: topographic location; b: A₀ and A horizons. Vertical lines indicate growth of the tree.