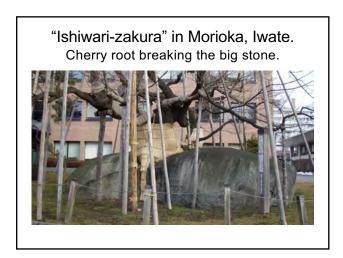
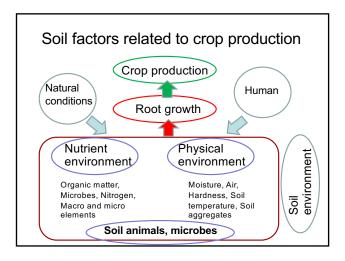
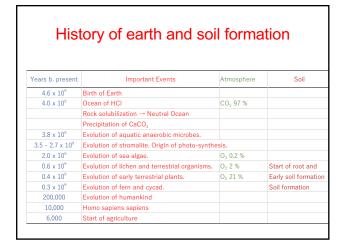
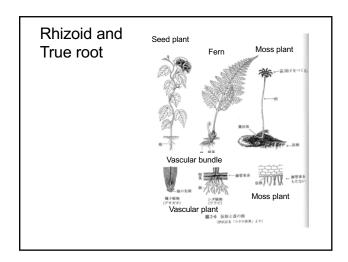
Plant Growth and Rhizosphere

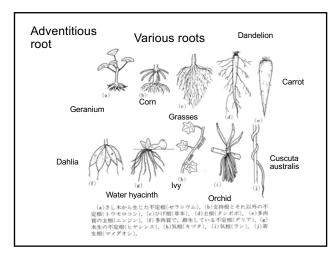

Kiyoshi Tsutsuki

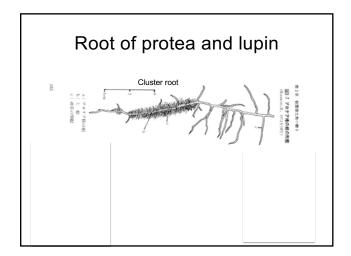

http://timetraveler.html.xdomain.jp/

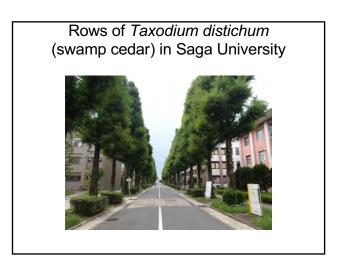


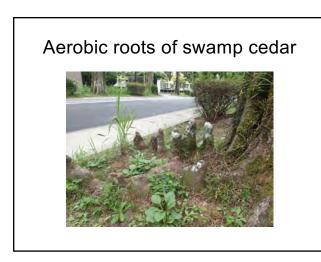
"Root" is a contact point between plant and soil

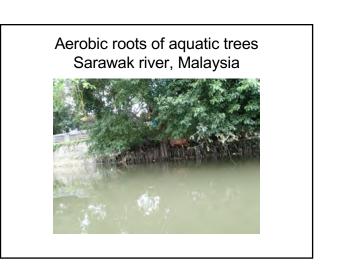

- · What gives root to soil?
- · What gives soil to plant through root?
- · Root improves soil.
- Soil supports the growth of plant through the root.

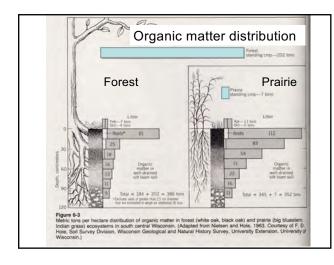












Annual dry matter production in root and above ground parts Root Above Total Root/ **Plants** (t/ha) (t/ha) (t/ha) Above 1.3-3.0 7.2-12 8.5-15 0.18-0.26 barley wheat 1.4-2.5 4.5-9.2 6.5-11.7 0.21-0.44 clover 1.8-4.5 5.0-6.7 7.5-11.2 0.28-0.67 corn 4.4-4.5 8.3-9.0 12.8-13.5 0.50-0.54 3.9-4.0 6.4-6.7 1.39-1.67 potato 2.4-2.8 7.8-18.0 6.6-13 1.2-5.0 2.6-5.5 Sugar beet pine 1.8-1.9 7.4-10.5 8.6-12.4 0.16-0.18 oak 1.3-1.8 6.5-10.0 7.8-11.8 0.18-0.20 Tropical f. 2.6-2.8 21.7-28.7 24.3-31.6 0.10-0.12

0.15-0.33

Proportion of root to whole plant:

Grasses 13-84% **Woods** 9-24%

Root residue remained in soil after harvest:

Some hundreds kg/10a, Some t / ha

Root length

· Total root length / unit area

German f.

 $\begin{array}{lll} \text{Grasses} & 50\text{-90 km/m}^2 \\ \text{Soy bean} & 25\text{-40 km/m}^2 \\ \text{Potato} & 20 \text{ km/m}^2 \end{array}$

Total root length / unit mass

Grasses 300-400 km/m³ Potato 100 km/m³

Generally large in surface layer and decrease with depth. Large at $10-20\,\mathrm{cm}$ depth for corns and soy bean.

Factors influencing root development

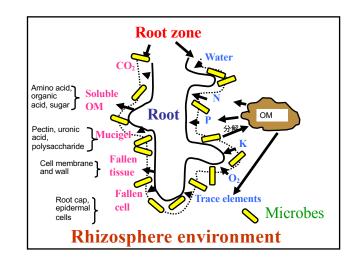
- Crops with long growth period have longer roots.
 - → winter wheat

No difference between C3 and C4 plants.

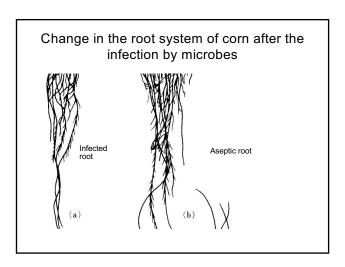

 Water shortage, high or low temperature, nutrients deficiency enhance the root growth. Shortage of sunshine retards the root growth.

Maximum and frequent root depth of various crops.

Plants	Maximum (cm)	Frequent (cm)
Rice	60	55
Winter wheat	190	130
Spring wheat	145	90
Barley	135	80
Corn	240	180
Soy bean	60	40
Sugar beet	170	160
Sweet potato	100	80


Maximum and frequent root depth of various crops.

Plants	Maximum (cm)	Frequent (cm)
Tomato	150	90
Cabbage	145	80
Cucumber	110	30
Onion	100	80
Asparagus (6th year)	310	180
Sunflower	200	70
Alfalfa (2 nd year)	300	160
Red clover	280	100


Turn over rate of soil carbon in 3 climate zones.

	England	West Canada	Brasil
Climate zone	Temperate	Cool temperate	Tropics
Soil types	Luvisol	Mollisol	Spodosol
Crop	Wheat	Wheat - fallow	Sugar cane
Soil weight (Mg/ha)	2200	2700	2400
Organic carbon (Mg/ha)	26	65	26
Annual carbon input (Mg/ha)	1.2	1.6	13
Turn over rate of C (years)	22	40	2

Microbial numbers ratio between rhizosphere and non rhisosphere

Plants	Rhizo / Non-rhizo	
Wheat	7. 6	
Oat 5. 2		
Flax	6. 5	
Timothy	10. 8	
Alfalfa	10. 8	
Red clover	10. 1	

Functions of rhizosphere microbes

Decompose organic matter and hand nutrients to root.

Protect root from disease germs.

Symbiosis with mycorrhizal fungi enhance the absorption of hardly soluble phosphate and water far from root.

Symbiosis with rhizobium bacteria enables nitrogen fixation.

What root system does to soil: 1

Formation of soil aggregate.

Secretion of amino acid and sugar.

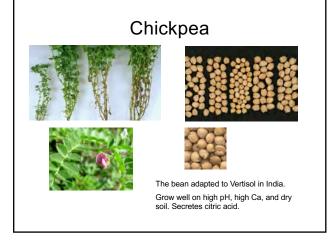
Old root hair and root cap cell are fell.

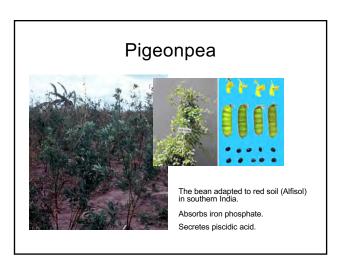
→ Stimulation of rhizosphere microbes

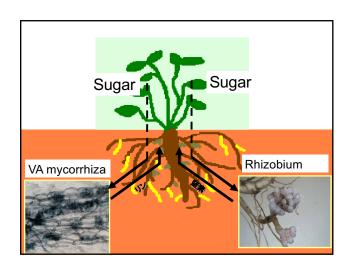
Increase soil organic matter.

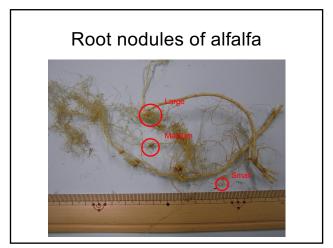
What root system does to soil: 2

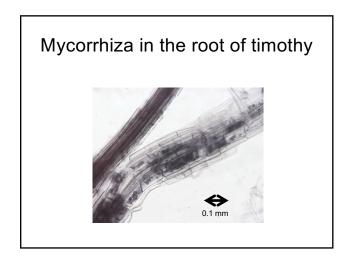
Solubilize hardly soluble nutrients such as phosphates in Ca, Fe and Al salt form.


Mugineic acid for wheat.

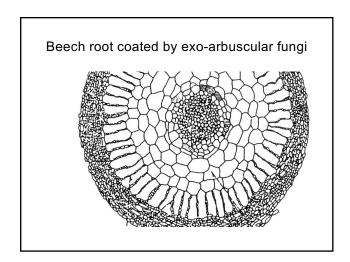

Piscidic acid for pegion pea.

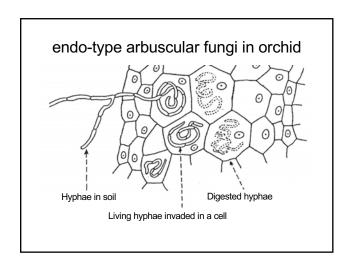

Oxalic acid, citric acid, malic acid are very common in various plants.

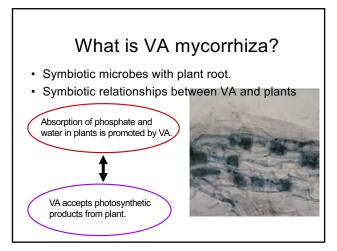

Secretion of organic acids from root

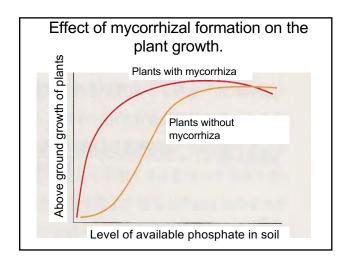

Lupin	Citric acid	Ca phosphate
Alfalfa	Citric acid	Ca phosphate
Rapeseed	Malic acid and citric acid	Ca phosphate
Pigeon pea	Piscidic, malonic, oxalic acids	Fe phosphate
Chick pea	Citric acid and succinic acid	Ca phosphate Fe phosphate
Buckwheat Brassica napus	Hydrogen ion	Ca phosphate

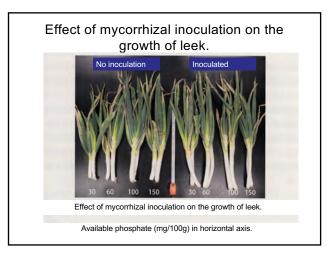


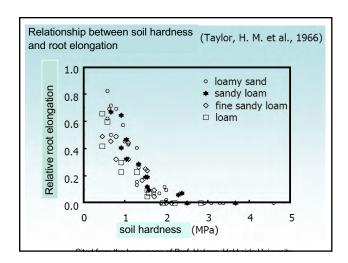


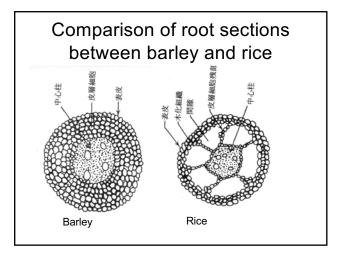












Physical properties of soil influencing the root growth

- · Penetration resistance value
 - Inverse proportion
- · Moisture content
 - Inverse proportion
- · Air space volume
 - Direct proportion
- · Bulk density
 - Optimum range around 1.0

Non rhizosphere soils in upland and paddy fields

	Redox state	Major microbes	States of various substances
Upland	Oxidative	Aerobic microbes	NO ₃ -, Fe ³⁺ , MnO ₂ , SO ₄ ²⁻
Paddy	Reductiv e	Anaerobic microbes	NH ₄ +, Fe ²⁺ , Mn ²⁺ , S ²⁻

Rhizosphere soils in upland and paddy fields

	Nitrogen absorption	рН	Redox state
Upland	Nitrate	Increase	Decrease
	(absorbtion)	compared	compared
	CO ₂	with non	with non
	(secretion)	rhizosphere	rhizosphere
Paddy	NH ₄ ⁺	Decrease	Increase
	(absorbtion)	compared	compared
	H ⁺	with non	with non
	(secretion)	rhizosphere	rhizosphere

What is good soil for the root growth?

- Root can develop deep, wide, and healthy, and can supply enough amounts of nutrient and water to above ground part.
- For this purpose · · · · ·

What is good soil for the root growth?

- ① Good soil aeration, drainage, and water retention, and soft.
 - ← Aggregate structure formation
 - $\leftarrow \ \, \text{Application of organic matter}$

What is good soil for the root growth?

- ② Have a good balance in nutrients. Have a proper pH value.
 - ← Soil diagnosis is carried out.
 - Improvement of soil acidity (Application of lime)

What is good soil for the root growth?

- ③ Contains organic matter, food for soil microbes and organisms. Soil organisms are abundant.
 - Application of compost and green manure.