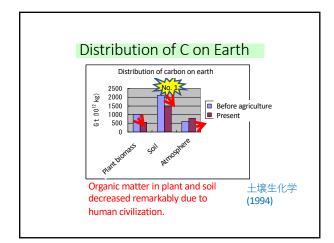
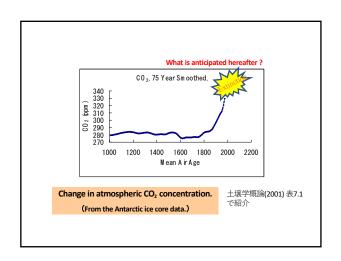
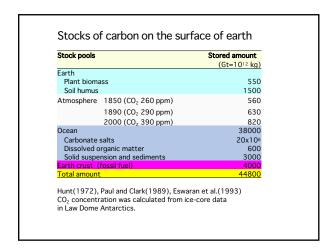
Global Circulation of Carbon related to Climate Change and Environment

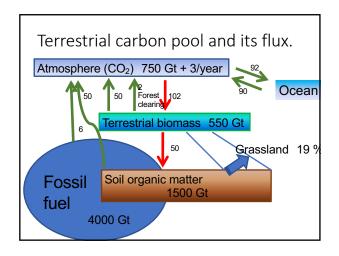
http://timetraveler.html.xdomain.jp Kiyoshi Tsutsuki

Climate change, population increase, and food problem


- World population will increase to 20 billion in 2050.
- The increase in food production to match the increased population can not be expected due to the global warming and climate change.
- Big typhoon → Flooding
- El Nino → Drought
- Salt accumulation in the crop land
 - ←Flooding in the coastal area
 - ←Salt accumulation due to drought


Large amount of gas is emitted from soil surface




Global Warming Potential

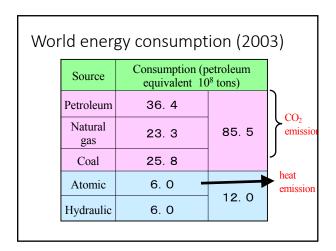
	Gasses	GWP
1	Carbon dioxide (CO ₂)	1
2	Methane (CH ₄)	21
3	Nitrous oxide (N ₂ O)	310
4	Trifluoromethane (CHF3)	11,700
5	Difluoromethane (CH ₂ F ₂)	650
6	Fluoromethane (CH₃F)	150

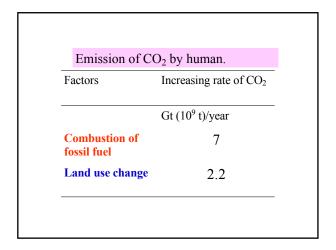
Occurrence of Nitrogen on Earth and its pool size. Occurrence 10⁶ t Atmosphere 3.9×10^9 15×10^{3} Terrestrial Plant Animal 0.2×10^{3} 150×10^{3} Soil organic matter Ocean **Biomass** 0.5×10^{3} Soluble and sediment 1200×10^{3} Nitrate nitrogen 570×10^{3} in the above 植物栄養学第2版(文永堂)

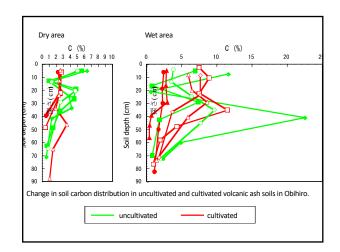
Occurrence of Phosphorus on Earth and its pool size. Occurrence Terrestrial Biomass 2.6×10^{3} Phosphorus rock 19×10^{3} Soil $96 \sim 160 \times 10^3$ 0.090×10^{3} Fresh water $0.05 \sim 0.12 \times 10^3$ Ocean Biomass Soluble inorganic P 80×10^{3} $840,000 \times 10^3$ Sediment Soil is the largest stock for C, N, P in the terra. 植物栄養学第2版(文永堂)

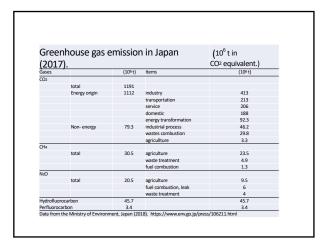
Biomass production and Respiration/combustion on earth (10^9 t C/year)

	Biomass	CO ₂ Production
Plant	500	34.5
Animal	0.5	4.1
Human	0.1	0.7
Microbes	1.0	112
Fire		6.9
Eruption		0.15
Factories		15
Total	502	173.5


Energy consumption by 1 person

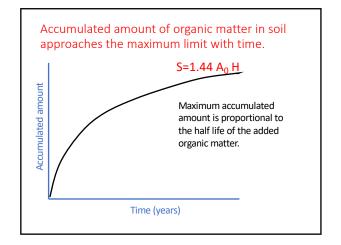

• World (Average) 1.7 t /year (petrol equivalent)


Japan 4.1 t /yearUSA 8.0 t /year


• Human life increases the atmospheric CO₂ concentration.

• Plant and Soil absorb and store the emitted carbon.

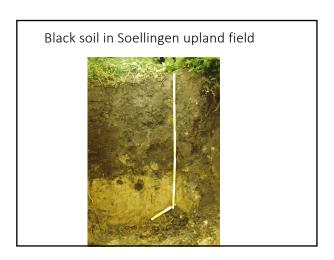
Gasse	es		Countermeasures
CO2	land use change	forest clearing	Stop or decrease forest clearing.
		grassland turning	Stop turning grassland to cropland.
		peatland burn and drain	Stop agricultural use of peatland.
			Do not drain the peatland.
	machine operation	fuel consumption	Decease the frequency of machine use.
	agricultural waste	burning	Do not burn the crop residue.
			Recycle the agricultural waste.
	soil	soil respiration	Minimise ploughing or non-ploughing.
		ploughing	Return organic matter and animal excreta to soil after composting.
			Grow green manure.
CH4	agriculture	paddy field	Do not apply fresh organic matter.
		domestic animals	Intermittent drying of paddy field.
N ² O	agriculture	N fertilizer transformation	Decrease the use of inorganic fertilizer.
		denitrification	Do not make the anaerobic soil condition
			Grow legume green manure for N source

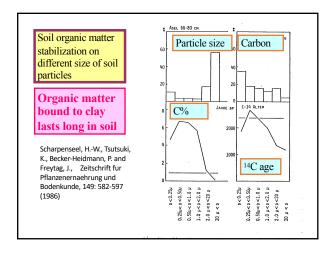

Constituents	Abbreviati on	Mean Residence Time	S (kg)	A ⁰ (kg)
resh organic matter (yearly imput)				1000
Decomposable Plant Material	DPM	1	10	10
lefractory Plant Material	RPM	3.9	470	120
liomass	BIO	25.9	280	10.8
hysically stabilized organic matter	POM	94.8	11.3×10^{3}	119
hemically stabilized organic matte	r COM	2565	12.2×10^{3}	4.76
Vhole Soil Organic Matter	SOM	91.7	24.3×10^{3}	265
enkinson and Rayner, Soil Scinece 123, 6, 19	17			
(kg) : Expected accumulation of organic ma	ter after 10000 y	rears		
hen 1000kg ha-1 of fresh organic matter is in	corporated ever	y year.		
(kg): Yearly gain of soil organic matter (kg)	g ha-1) ,			
alculated from S and mean age. A ₀ = S/Aver	age Age			

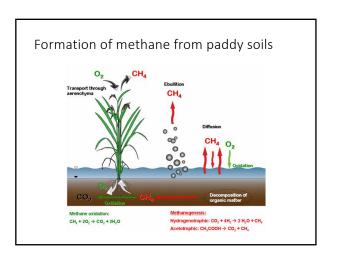
Accumulation of organic matter in soil

$$S = (1/log_e 2) A_0 H$$

= 1.44 $A_0 H$


S: Accumulated amount of organic matter after infinite years


A₀: Annual input of organic matter
H: Half life of organic matter
1.44H: Mean residence time



Carbon sequestration in soil

For the purpose of carbon sequestration, it is important to return the organic matter in stabilized form, for example, after composting, or after charring.

Characteristics of paddy soils

- Characteristics of paddy soils are due to the flooding.
- Supply of oxygen is limited by the surface water, and the oxygen in the ploughed layer soil disappears. Iron oxide and manganese dioxide are consumed by the microbes and the soil becomes anaerobic.

Problems related to paddy soils (1)

 Problems due to soil reduction after flooding Formation of volatile fatty acids
 Acetic acid, Propionic acid, Butyric acid

Formation of hydrogen sulfide due to sulfuric acid reducing bacteria $SO_4^{2-} \rightarrow H_2S$

Problems related to paddy soils (2)

Formation of methane

- Around 10 % of the global methane formation is from paddy field.
- Formation of methane from paddy soils is controllable by field management, organic matter management, and irrigation water management.

Formation of nitrous oxide

 \bullet During the denitrification process, N_2O is formed.

How to solve the problems

- Problems of volatile fatty acid, methane, and nitrous oxide formation can be solved by the following measures.
- Avoiding to bring the soil condition strictly anaerobic by conducting intermittent drying.
- Avoiding to incorporate fresh rice straw or fresh green manure.
- Wait some time after organic matter application before seeding rice.
- Refrain from excess nitrogen fertilizers.
- Apply ammonium form fertilizer deep in the reduced soil layer.

Composition of paddy soil

Paddy field has many excellent merits.

- Surface water
- Ploughed layer
- Ploughed pan layer
- Sub layer

Merits of paddy soil

- ① Problems due to continuous cropping are rare.
- Reason
- 1) Pathogenic fungi and nematodes die under anaerobic condition.
- 2) Growth inhibiting substances are washed by the irrigation water.
- → Rice cropping is continued for more than thousands of years in some places, e.g. rice terrace in Banaue, Philippines.

- ② Soil fertility does not decrease.
- Reason
- 1) Supply of nutrients from the irrigation water.
- 2) Decomposition of organic matter is repressed due to the anaerobic condition.
- Various kinds of nitrogen fixing organisms are living in the surface water, and in the root zone soil.

- ③ Natural nutrients are supplied abundantly.
- Reason
- 1) Nitrogen is supplied from soil organic matter, and the formed ammonium is held by clay minerals and will not be washed away easily.
- 2) Iron phosphate becomes soluble after the reduced condition is formed.
- 3) Potassium and silicates are abundant in the irrigation water.
- 4) Soil pH becomes neutral after flooding the soil.

- ① Due to the high ability to adjust the temperature, rice crop becomes tolerant to meteorological hazard.
 - Reason

Due to the high specific heat of water, soil temperature is kept high and the cold injury of rice is mitigated in the cold area.

- ⑤ Removes nitrogen and phosphorus from the irrigation water.
- Reason
- 1) Excess nitrogen is denitrified.
- 2) Excess phosphorus is adsorbed on soil constituents.

- 6 Soil erosion hardly occurs.
- Reason
- 1) The paddy field is flat.
- 2) Soil erosion is controlled by the ridges and flooding water.

- 7 Weeds grow little.
- Major weeds in the paddy field are Eriochloa species and Carex species.
- Few weeds grow in flooded water.

 $\ensuremath{\$}$ Genetic potential of rice.

Rice plant tolerant to climate change. New varieties from IRRI.

- Flood tolerant rice
- Drought tolerant rice
- Salt tolerant rice
- High temperature/ Low temperature tolerant rice
- Problem soil tolerant rice (Zinc deficiency Potassium deficiency Iron excess Aluminum excess)